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I
FOREWORDI

rhis repcrt describes the work that was accom-
plished by Pratt & Whitney Aircraft during the

period 1 January 1965 through 30 Juhe 1965 in
accordance with the requiremen t s of (ontract
FA-SS-65-18 entitled "Dev dopment of Super-

conic Transport Engine - Phase IU-B". The re-
port is submitted to fulfill the requirements of

Item 7, Section D of the contract work statement.

This report is classified as CONFIDENTIAL in

compliance with the provisions of DD Form 254

dated I January 1965 provided for this contract.
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INTRODUCTION

The overall objectives of the program conducted under contract
FA-SS-65-18 were to continue: the design of the STF 219 duct-heating I
turbofan engine, liaison with aircraft manufacturers to ensure optimum
engine and ejector-reverser installation, and verification of major
component performance by approximately full-scale component testing.
This program was a continuation of the contractor's design and test
effort on supersonic transport powerplants and was aimed at achieving
further advances in engine design and component state-of-the-art over
those submitted in the Phase Il-A proposal for the supersonic transport
engine.

In accordance with the requirements of contract FA-3S-65- 18, the pro-
gram was divided into 15 major fields of effort corresponding to the
tasks listed in Section B of the contract work statement. These fields
of effort included engine design in addition to research and development
on compressors, primary combustion, turbines, augmentors, inlet
and exhaust systems, noise reduction, controls an6 accessories,
bearings and seals, and fuels and lubricants. Also, investigations were
conducted on installation optimization, materials and manufacturing
techniques, and supporting design considerations such as maintainability,
reliability, and value engineering. A discussion of the work accom-
plished in each of these fields in presented in separate sections of this
report in an order corresponding to the wcrk statement items of the
contract.
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I
5 ITEM 1 - INSTALLATION COORDINATION

I OBJECTIVE

The Contractor continued to work with the
I airframe contractors to ensure )ptimum

installation arrangements for the engine and
ejector reverser in the airframe. Enginej cycle studies were also included in thi. work.

A. INSTALLATION COORDINiTION MEETINGS

WITH AIRPLANE COMPANIES

1. INSTALLATION COORDL4ATION WITH THE BOEING AIRPLANE
COMPANY

a. Introduction

Six coordination meetings were held between the Contractor and the
Boeing Airplane Company during Phase IIB. The most significant
topics discussed in the course of these meetings are summarized below:

" Performance. IBM pe-forn-ance decks for both turbofan and
turbojet were given to Boeing. Changes were incorporated in
these programs, at Boeing's request, to enable more efficient
use to be made of their computer time.

"* Ejector concepts. Improved mechanical and aerodynamic
ejector conceptb were studied, the most recent of which is
a sliding shroud ejector (a fixed shroud ejector wag used
during Phase IHA).

I * Noise, Information was exchanged several times, and Boeing

witnessed a full-scale noise test in which a J57 afterburning
engine, ur iing a "boiler plate" SST type ejectu r, wIs VU,1.

* F:ngine-to-inlet ( oiptatibility. Various contstant[ for theSContractor'j aria~ou computer progranm for studying engine-go-Inlot acto ipr' 0a iloi y weV ro tlu1I lir-i to l••einsj lii hhl tli

lu l'htifiu atd to,'" -jet, fil

,'NPIP" "NTIA) ..
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* Turbine inlet temperature. The Contractor's turbine program
was reriewed several t:mes during Phase 1IB. Data, hardware,

and fuLure planning were discussed.

* Weight. Weights were updated periodically. Weights for a
specific installation were supplied to Boeing with each ins-
tallation drawing. 1

* Engine-to-wing mating. A reduction in the base drag in the
region between the engine ard the wing at the wing trailing

edge was made. Compatibility with Boeing's latest installa- I
tion requirements was achiev id.

The above items, with the ex-,ception of e-,aine-to-wing mating, are

covered in detail elsewhere in this report. This section of the report
will, therefore, be devoted to a discussion of the engine-to-wing mating
work done during Phase 1IB.

b. Summary of Engine-to-Wing MatinWork

A reduction in base drag was at complished by changing the shape of
the ejector from round to octagonal., and by moving the ejector cant
point aft relative to its Phase IIA position.

Figure 1-1 shows a comparison between the Phase ILA and Phase IIB

configurations. Figure 1-. showi the benefits obtained by moving the
ejector cant point aft.

c. Nomt-nrlpfiif- A

The following nomenclature is used in describing the engine-to-wing
mating work.

* Equivalent diameter. An octagonal ejector is used to eliminate
base drag. As it is cumbersome to detscribc the size of an
octagon, i.e., by dimensions across flats and corners, the
terrrinology "equivalent diameter" or "equivalent round" haH

been adopted. This expression refers to thc diameter o1 a 1;
round ejector which haM the Harixi giomnetric area as t},f.

parti, ,lar octagonal ejector under discuHsion. I
; CaiA Wsiia . Foru- 1 -[ll iiteintm and purpoHe.I, the p{on'Ii through

w rtI 6 thl," ejrctor is canted anter'eI:[N the engin ( t(.ner line I
a! . l,,,Int ,bokilt which the, Cjeci ,, is .1 brry of revo,,i• i,,1 .
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I the cant point influences the following:

Ejector cant angle
Position of the ejector relative to the wing.

i d. Background

(1) Selection of Cant Point Location

For a given size engine and ejector combination, and for a given ex-
haust gas target point, it is advantageous to move the cant point aft.
As the cant point moves aft, the ejector cant angle decreases while the

ejector stays close to the trailing edge of the wing with very little in-
terruption of internal wing structure. This is illustrated in Figure 1-2
It is desirable to have a decreased cant angle because of ejector inter-

nal aerodynamic and mechanical reasons. It is also desirable to have
the ejector clo' e to the wing because of the consequent reduction in

base drag, and simpler wing mating.

In the course of studying how to obtain these desirable featttres, the
ejector was canted in three different places. In Phase IIA the ejector

I was canted at the rear mount plane. Early in Phase TIB, the cant
point was moved aft to the rear face of the turbofan primary nozzle to

determine the effect on base drag and ejector cant angle. Later in

Phase HIB, the cant point was moved slightly forward to a plane which
passes through the throat of the fan nozzle (or the afterburner nozzle
in a turbojet). I his latter position assured symmetry downstream of

I the nozzle choke point. Boeing selected this cant point as the one which
best saited their installation. In each of the foregoing cases, however,

the canting results in some non-symmetry upstream of the cant point
which will impose additional mechanical and aerodynamic complexity.

(2) Mounts, Tailflaps, and Inlet Extensions

As the installation progressed, the engine (and mounts) were movea
rearward to reduce base drag. Finally, in order to get the variable
exhaust nozzle (tailflaps) entirely out from under the wing where it
could adversly effect base drag, the ejector was positioned relative
to the wing such that the hinge point of the tailiflaps was either in line

with or aft of the wing trailing edge. Since the Boeing inlet position
was fixed relative to the wing, the engine had to fill the space. between
the ejector (as positioned by the tailflap hinge point) and the inlet. TheI horter turbofan required an extension or spacer between the engine
inlet and the Boeing inlet, see Figure -I -I The lor)g•-:r I VuIbojtj ,'With

i ull niterlltiiriC N did ,not i-qUi - ;5in inlet c'xtentioiih and, in .niic caneri

they w-rez long rnongii to ,recetnitlate- ni•v,,ig thif iilfl;ip hi;ige -point

alt of the wing tN.iling edge.
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(3) Boeing's Installation Requirements

The differences between the installation drawings presented later n
this section reflect the changes in Boeing's installation requirements
as well as changes to the engine. As detailed design studies progressed,
various aspects of the powerplant, including length and diameter, were
revised. Close coordination with Boeing was essential to ensure that
these revisions were compatible with the frequently changing airframe j
requirements.

The installation drawings were based on the latest Boeing requirements
in the following areas:

0 Wing contour. Wing cross section at the outbound nacelle
location was provided by Boeing.

* Inlet position relative to the wing. This was changed as a H
function of the inlet flow field.

* Exhaust gas target point. This was fixed to be compatible
with good cruise performance and by the location of the hori- Ii
zontal stabilizer.

* Permissible limits of mount locations. These limits were
supplied by Boeing from time-to-time based on the latest
wing configuration.

* Thrust reverser targeting requirements. Reverse thrust
requirements and the possibility of re-ingestion were taken
into consideration.

* Ejector position relative to the wing at the wing trailing edge.
This position was variedfrom time to ti.me depending on its
influence on the favorable interference effect between the
engine and the wing.

As a rule, the inlet, the exhaust gas target point, and the position of
the ejector variable tailflap hinge point were all fixed relative to the
wing. The objective was to fit the engine to these points usino, ex-
tens:ens, canting, etc., in such a manner as to result in the minimum
amount Qf interruption of wing internal st.ructure.

(4) Ejector Concepts

Improved aerodynamic and nmechanical concepts were Htudlied (lII Ping

CAi
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Phase IIH. These studies resulted i.n the sliding shroud ejector (a
fixed shroud ejector was used in Phase IIA). The sliding shroud
ejector uses more efficiently the energy available from the engine and
secondary air streams, and reduces the minimum wrap of the ejector
around the engine. The sliding shroud ejector also has a higher L/D

than the fixed shroud ejector. Its longer length for a given diameter,
together with the translating shroud capability, has the potential for
more flexibility in accommodating thrust reverser targeting. This
ejector appears on the latest turbojet and turbofan installations.

(5) Afterburner Concepts

The afterburner for the turbojets progressed from a short, partial
(acceleration) type unit with a Mach 2.0 limitation to a longer, full
afterburner with Mach Z. 7 capability (Boeing indicated that they re-

quired a Mach 2.7 or fuli afterburning capability). This primarily
accounts for the increased length of the turbojet engines toward the
latter part of Phase IIB.

(6) Flow Schedules and Turbine Inlet Temperature

Above Mach 2.0 on both the turbofan and the turbojet, the corrected
engine airflow as a function of Mach number may be selected over a
range of values. This flexibility gives Boeing an opportunity to choose
the airflow schedule which results in the best match between engine
and inlet. A 't gh", "base" and "low' flow schedule were offered. In
Phase IIA, Boeing selected a base flow turbofan. In order to provide
an opportunity for comparison of turbojets, all three flow schedules
were offered in the latter part of this Phase. For each flow schedule,
configurations for both the Z00oor and Z300 6F tLurbine inlet LeLIIPera-
tures wcre presented. Boeing could, therefore, examine the trades
involved in starting initial service at the lower temperature with sub-
sequent growth to the higher temperature within the same external en-
velope.

e. Discussion of STF 219B Turbofan Installations

The study of new ejector and installation concepts began with the Phrtse

HA configuration, (see Figure 1-3 ), which was a 600 lb/sec engine with
a cylindrical ejector of 76.00 inch diameter. This arrangement Dro-I (uced a base drag area between the ejector and the wing trailing edge
"of approximate!y 425 'qq, in.

T'ihe object of the new studies was to, reduce this base drag area, thereby
I ipruoviiLg on the Phas,- ILA i,,stallation. Wing conttO.r, m•o iAtnt location,

CONFIDIENTIAL
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and exhaust gas targeting information, as well as nacelle caitu,'e area
and a 5 0 inlet angle relative to the horizontal reference datu.mn, was
supplied by Boeing and was used as the basis of these studies. An oc-
tagonal ejector was selected to further reduce the base dLrag area at
the wing trailing edge. The flat side on top of the octagonal ejector I
offered possibilities of closer coupling to the wing surface than the
circular section of the Phase I1A ejector.

A number of new arrangements of the engine and the octagonal ejector
relative to the wing were investigated. These arrangements are

summarized below.

"* Figure 1-3 (Phase I11 configuration) shows how an octagonal

ejector with the same equivalent area as the 76.00 inch dia-

meter ejector of Phase IIA reduces the base drag area to 398

sq. in.

"* As in Figure i-3 , Figure 1-4 shows an arrangement with
the engine and ejector tangent to the wing. The rear engine

mount plane was moved aft 40.00 inches (relative to its
Phase ILA position) which required a 33.50 inch extension
to the engine inlet case. The ejector was canted at an
angle of 5* at the rear mount plane. The base drag area

was red':zed to 337 sq. in. i
" Figure 1-5 shows an arrangement with the rear engine

mount plane moved aft 30.00 inches. The ejector was I
canted 8* at the rear mount plane and the engine/ejector
was inserted 4.00 inches into the wing. A 31.00 inch ex-
tension was required. The base drag area was reduced to
320 sq. in.

4
" Figure 1-6 shows an arrangement identical to Figure 1-5 j

except that the ejector cant point was moved aft to the
primary nozzle plane. The cant angle is 60. A 40.00
inch extension was required for this. The base drag area
was reduced-to 230 sq. in.

"* Figure 1-7 shows an arrangement with the rear mount U
plane moved aft 40.00 inches and the ejector canted at 80
at the primary nozzle plane. The engine/,ujector was in-
serted 4.00 inches into the wing. A 40.00 inch extension

was required. The base drag area was reduced to 150 sq.
in.

FIAOC NU 1-6 - . .
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* Figure 1-8 shows the best arrangement from a base drag
reduction standpoint. The ejector tailflap hinge line was
moved aft to the wing trailing edge and set tangent to it.

The ejector was canted 90 at the primary nozzle plane.
This configuration required a 51.50 inch extension, but
reduced the base drag area to zero.

At this point in the program, Boeing specified a larger ejector diameter.
Their area ruling dictated an ejector area/inlet area ratio = 1.7.
Based on this, the ejector equivalent diameter was increased , 78.00
inches. Figure 1-9 shows an arrangement with this larger ejector
canted 11 * 30' at the rear mount plane. The ejector tailflap hinge

line was aligned with and set tangent to the wing trailing edge. This
configuration required a 44. 00 inch extension. The base drag re-
rmained at zero.

The ejector cant point was moved 10.00 inches forward of the primary
nozzle plane to the throat of the fan n(,zzle. This pres vrved symmetry
downstream of the fan nozzle choke point. Figure 1-10 shows an
arrangement using this new cant point on the new 78.00 inch diameter
equivalent ejector. The ejector tailflap hinge line was aligned and set
tangent to the wing trailing edge. The ejector cant angle was 8' 45'w.
This required a 49. 00 inch extension. Here again the base drag area
was zero.

Figure 1-11 shows an arrangement for a 650 lb/sec engine with an 81.00
inch equivalent diamete) ejector. The ejector is positioned so that the

tailflap hinge line is aligned with the wing trailing edge. The upper
surface of the octagonal ejector is set 3.00 inches above the wing upper
surface at the wing trailing edge as requested by Boeing. The nacelle
inlet capture area center point location of 29.60 inches down from the
horizontal reference line was changed to 28. 30 inches by Boeing. The

ejector cant angle became 80 41.7' and a 17. 4 inch extension was

required.

Figure 1-12 shows a further Boeing revision. The inlet angle was re-
duced to 20 15' from 5*. Figure 1-I is identical to Figure 1-11 except

for the aforementioned inlet angle and the ejector cant angle which was

increased to I11 2. '. A 30.63 inch extension was required.

Figure 1-13 shows an arrangement for a 600 lb/sec engine/ejector

system and is similar to Figure 1-10 except that it was laid out to the
latest Boeing geometry. The latest Boeing inlet centerline location

of 27. 30 inches down from the horizontal reference datum was used.
The ejector was positioned a s before, 3.0 Cinchet a hove the winei with

the tailflap hinge line aligned with the wing trailing edge. The ocl agonal I

P'ACE Hý. 1 - 7
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I
ejector haL, a 78.00 inch equivalent diameter and was canted 10.00

inches forward of the primary nozzle plane. The ejector cant angle is
l0' 55' and the configuration requiied a 36.98 inch extension.

The previous installation studies all involved fixed shroud ejector de-
signs. A sliding shroud ejector was evolved in Phase IIB. This shroud
makes more effective usc of the energy in the engine and secondary air

streams, reduces the minimum wrap of the ejector around the engine,
and provides greater reverser targeting flexibility. On the turbofan,
the shroud translates to three positions. The cruise position (blow-in
doors closed) is the forward-most position. For take-off and up through
the blow-in-door operating range, the shroud translates somewhat rear-

ward relative to the cruise position. The shroud translates further rear-
ward for reverse. The sliding shroud ejector is described in detail
elsewhere in this report. Figure 1-14 shows a turbofan cunfiguration
which incorporates a sliding shroud ejector. Figure 1-14 also shows
the most recent STF 219B accessory arrangement.

f. Discussion of STJ Z27B Turbojet Installations

A 500 lb/sec afterburning turbojet engine installation was presented to
Boeing for their initial Phase JIB studies. A number of new arrange-
ments of the STJ 227B engine/ejector relative to the wing were investi-
gated. The arrangements are summarized below. Two maximum tur-
bine inlet temperatures were considered: 2000°F and 2300°F.

"* Figure 1-15 shows an arrangement using an octagonal ejector
of 75.00 inch en' ivalent diameter on a 2300'F turl-,iie inlet
temperature engine with partial augmentation. The inlet
cowl was located 27. 00 inches down from the horizontal
reference line. Wing contour, reverser targeting, and the
5* inlet angle were supplied by Boeing and were used as the
basis for these studies. The ejector was positioned so that
the tailflap hinge line %&as aligned to and set tangent with the
wing trailing edge. The ejector was canted at the rear engine j
mount plane with a 100 15' angle required to hit Boeing's
exhaust gas target point. This configuration required a 13.40
inch extension at the engine inlet.

except that the ejector cant point was moved aft to the throat

of the afterburner nozzle, which reduced the cant angle to 70 40'.

This required a 13.80 inch extension.

I

rACe No. 1 - 8
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The 2000 0F maximum turbine inlet temperature t ngine incorporated
a full afterburner from its inception and was thus longer than the

23000F engine with partial augmentation. An 81.00 inch equivalent
diameter ejector was used. Figure 1-17 shows an arrangement using

this size octagonal ejector on a 20006?" turbine inlet temperature

"engine. The ejector, canted at the rear engine mount plane, required
a cant angle oi 8' 25'. The overall length of the engine and ejectorJeliminated the need for an inlet extensi,'n,

F igure 1-18 shows an arrangement identical to Figure 1-17 except thatf�the ejector was canted at the throat of the afterburner nozzle, which re-

duced the required cant angle to 6* 30'.

SAt this point in the program t1- ngine size was increased to 525 lb/sec.

Figure 1-19 shows an arrange 'at of this engine with a partial after-
burner and its required 76. 8 equivalent diameter ejector for tur-
bine inlet temperature of 230( 0 This configuration was positioned

relative to the wing according he latest Boeing data. A capture

diameter of 56. 18 inches locat 27. 75 inches down from the horizontal

I reference line with an inlet an..i of 20 15' was used. The ejector tail-
flap hinge line was aligned w` . e wing trailing edge and with the upper

surface of the octagonal ejec' i.00 inches above the wing upper sur-
4 face at the wing trailing edge The ejector was canted slightly forward

of the afterburner nozzle thi J: at J00 50'. A 21.00 inch inlet exten-
sion was required.

Figure 1-20 shows the corresponding arrangement for a fully augmcnted

2000 'F engine with its required 83.00 inch equivalent diameter ejector.
The engine was positioned relative to the wing similar to that shown in

Figure 1-19 except that the length of the engine moved the ejector tail-
flap hinge linc 315.00 inches aft of the wing trailing edge. The ejector

was canted at a point 2.40 inches forward of the afterburner nozzle

throat at 8*. No extension was required.

The previous installations all had fixed shroud ejectors. Later instal-.

lations used the sliding shroud ejector. On the turbojet, the shroud trans-
lates such that it has one position for forward flight, and another for

reverse. This ejector is described in detail elsewhere in this report.
Six full afterburning turbojet configurations incorporating the sliding

shroud ejector were presented to Boeing. These six configurations
comprised a high, base, and low flow version of the 2000'F and the

2300'F engine. Each configuration was adjusted to its particular flow

schedule and temperature for comparative purposes. As in the case

of the turbofan, once the comparison has been completed and a selection

made, one configuration may then evolve which permits growth from

PAEN -9 - .
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2300*F to 23000 F within the same external envelope. The six configu-
rations are summarized below:

" Figure 1-21 shows an installation study for a 2.000F tur-
bine inlet temperature, high flow engine. The ejector size
used for this configuration was 78. 00 inch diameter equiva-
lent and was canted 1.50 inches forward of the afterburner

nozzle throat at 7° 55'.

"o Figure 1-22 shows an installation study for a 2000 0 F turbine

inlet temperature, base flow engine. The ejector size used
for this configuration was 75.00 irch diameter equivalent

and was canted 1.80 inches forward of the afterburner nozzle

throat at 8* 35'.

" Figure 1-23 shows an installation study for a 2000'F turbine

inlet temperature, low flow engine. The ejector size used

for this configuration was 72. 00 inch equivalent diameter
and was canted 1. 75 inches forward of the afterburner

nozzle throat at 8 50 1.

" Figure 1-24 shows an installation study for a 2300'F turbine | tt

inlet temperature, high flow engine. The ejector size used
for this configuration was 78.00 inch equivalent diameter
and was canted 1.65 inches forward of the afterburner nozzle
throat at 8 9,

"* Figure 1-a5 shows an installation study for a 2300'F turbine
inlet temperature, base flow engine. The ejector >ize used

tor this configuration was 75.00 inch equivalent diameter
and was canted 1.80 inches forward of the afterburner nozzle
throat at 8V 35'.

Figure 1-26 shows an installation study for a 2300'F turbine
inlet temperature, low flow engine. The ejector size used

for this configuration was 70.00 ir.ch equivalent diameter
and was canted 2.00 inches forward of the afterburner nozzle

throat at 9 ° 45'.

It should be noted that in the above six installation studie- the overall
length of the engine/ejector eliminated the need for an inlet extension.

Figure 1-27 shows the most recent S'IJ 227 accessory arrangement.

PAUE NO I 10....
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i
Z. INSTALLATION COORDINATION WITH THE LOCKHEED

CALIFORNIA CO1 PORATION

a. Introduction

Coordination meetings were held between the Contractor and the Lock-

heed California Corporation during Phase iIB. The most significant

topics discussed in the course of tnese meetings are summarized below:

"* Engine accessories. The Phase IIA arrangement was revised

in order to relocate the accessories away from the bottom of
the engine.

"* Ejector. An octagonal blow-in-door ejector was studied as an
alternative to the lZ-si2Jkd design presented in Phase IIA.

" Engine cant and wing relationship. A study was made to deter-

mine the most desirable location for canting the engine as the

result of Lockheed's request that the engine be canted 4' in a

downward direction.

"* Sonic boom. The size of the engine was changed in the light
of the FAA's reduction in the sonic boom overpressure re-

quire rnents.

"* Turbojet installations. A number of installation sketches was

prepared for various versions of the turbojet, which was rein-
troduced during Phase IIB.

b. AccessoryStudy

Pratt & Whitney Aircraft restudied the accessory arrangement proposedI in Phase ILA. This arrangement consisted of engine accessories driven

by a gearbox located on the bottom of the engine and a power take-off

gearbox located on top of the engine which supplied power to drive the
airframe accessories. Lockheed requested that all engine accessories
containing combustible fluids be moved from the bottom of the engine

to reduce the danger of fire in the event of a collapsed landing gear or
belly landing.

Figure 1-28 shows a revised arrangement with the engine accessories
split into two groups, Those accesso)ries requi ring a power drive were

nmounted on the gearbox located on the left side of the engitne at the

engine horizontal center line. The remaining accessories were grouped

at the same elevation on the opposite side of the engine. All accessories

~.. ... . ,.. ... . --
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were removed from the bottom. This arrangement was rejected by
Lockheed because the accessories in the upper quadrants interfered

with their front engine mount structure. The arrangement also pre- I
vented ready access to the power take-off gearbox.

Continued study rejected the use of two separate towershafts and gear-
boxes for engine accessories because of internal gearing difficulties.
A new arrangement (Figure 1-Z9) was devised with the engine-driven
accessories located on the left side of the engine approximately 450
below the engine horizontal center line. The remaining accessories
were located at the same level on the opl )site side of the engine.
Although this arrangement involved greater difficulty in removing the
accessories from the bottom of the engine, the arrangement was gen-
erally acceptable for the 700 lb/sec engine size. When the size was
reduced to 650 lb/sec this accessory arrangement became less attrac-
tive, as the units were crowded together in the reduced circumferential
space. An alternate arrangement, Figure 1-30 evolved locating the
engine accessory drive shaft on the right horizontal centerline, with
the accessories grouped differently from Figure 1-28.

c. Octagonal Ejector

Early in Phase 1I1 Pratt & Whitney Aircraft studied the use of an
octagonal blow-in-door ejector as an alternate to the circular door 12-
sided design presented in Phase IIA. Figure 1-31 is a schematic draw-
ing of the octagonal ejector sent to Lockheed. The octagonal ejector J
dominated studies during Phase lIB. All subsequent installation sketches
sent to Lockheed represented some modification to this design. A
detailed description of ejector studies is covered in the Ejector Rever-
sers section of this report.

d. Engine Cant and Wing Relationship

During Phase JIB Lockheed moved both the inboard and outboard en-
gines rearward on the wing approximately 5 to 6 feet. Concurrently,
they requested that the engine be canted 40 downward. A study was
made to determine the mosL desirable location for canting the engine,

and a point just forward of the ejector was chosen. Figure 1-32 (out-
board engine) and Figure 1-33 (inboard engine) show the STFZ19-L-700
engine installed in the Lockheed L-2000-4 wing with a 4V engine cant.
This sketch indicated that the rearward relocation of thu engine allowed

the installation of the engine-ejector to ignificantly reduce wing block-
age of the blow-in doors. During Phase IIA, the forward location of

the engine placed the ejector in the thicker part of the wing and resulted
in blockage of two blow-in doors.

PA, No 1-12 .......- ....
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e. Reduc:tion of Sonic Boom Overpressure Requirements

The FAA's reduction of the sonic boom overpressure reduced the inaxi-
mum thrust requirement for the engine. The engine iM now sized for

cruise thrust levels instead of the greater thrust levels previously

required for transonic acceleration, In addition, refinement of the
aircraft design with accompanying increases in lift/drag values lowered
thrust requirements. As a result the size of the engine was reduced to
650 lbs/sec airflow size.

Figures 1-34 and 1-35 are installation drawings for the new size of
engine. Critical areas (i.e. accessory arrangement and ejector 0. D.)

were reviewed to assure proper nacelle clearance. These drawings
reflect the chaages in basic engine length derived from the continuing

detailed design of the engine. The most significant change was the
addition of a diffuser section between the third stage turbine blades and

the rear struts. This results in the reduction of the exhaust gas velocity
from the turbine to the desired value. This feature is further explained
in the section of this report on Turbine Design. A revised weight for
the 650 lbs/sec STFZ19 engine was developed.

f. Miscellaneous Studies

Lockheed expressed concern about the area available for passing
secondary airflow between the front mount ring O.D. and the nacelle
wall. Information was then supplied to Lockheed describing the weight
changes in-urred in reducing the front mount ring 0.D. by 0.5 and 1. 0
inches to iL crease the secondary air passage. The design of the ring
had been optimized in Phase IIA.

J
While the detail design of the STFZI9 turbofan continued, a study was

made to position the Pt? and TLz probes, which are necessacy for
biasing the engine fuel control. The probes were located in the engine
front mount ring as shown in Figure 1-36.

At the end of Phase IIA, Lockheed requested a study of flame arrestors
in the secondary airstream. Although spring-loaded flapper valves in
the secondary air stream to prevent a reverse or forward flow of sec-
ondary air were included in the Phase HA design, it was considered
possible that during conditions of very low rearward secondary airflow,
a combustible mixture from a leak in the engine compartment might

ignite when it reached the hot exhaust section. This could propagate
forward through the flapper valve openings irto the engine compartment.

PAUL NO. 1-13 ~ -..
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L.ockheed provided a sketch of a suggested flame arretstor showing the

general construction, frontal area, and desired pressure drop. The

resulting study is shown on Figure 1-37. Th'i flame a,*restors were

located immediately forward of the flapper valves. Their installation

requires a mounting structure, attachment flanges, and accessibility

for replacement of damaged units. The original study based on the

700'lbs/sec engine showed that the flame arrestors could be installed

without difficulty and still provide the req,'ired area to maintain a

minimum pressure drop.

Continued detail design of the engine and the reduction in engine s e

from 700 lbsisec to 650 lbs/sec resulted in slightly less room for the1

flame arrestors. Similarly, continued ejector studies resulted in a

tighter wrap between the engine and the ejector reducing still further

the area available for the flame arrestors. A study was made of the

entire secondary airflow passage from the engine inlet to the ejector

throat because of these changes and the possible increase in secondary

airflow to nearly 18 percent of the primarr airflow.

Figure 1-38 shows that the minimum area available for secondary air- I
flow occurs at the flame arrestors, flapper vaxves, and rear mount

rings. Figure 1-39 shows more detail of these areas. This minimum

area is now smaller than earlier studies showed. With an increase in
secondary airflow and a corresponding increase in pressure drop, con-

tinued studies will be required in this area to provide a proper installa-
tion.

g. Turbojet Installations

The reintroduction of the turbojet engine during Phase IIB required

updating of the Phase IIA installation. As a result, two preliminary

installation drawings for a partial afterburning and a full afterburning

turbojet were developed for the initial study (Figures 1-40 and 1-41),,
Stbsequently, as the turbojet design evolved, a series of six installa-

tion sketches were prepared each showing the effect of turbine inlet
temperature and airflow schedule selection on the size of the engine

and ejector. Figure 1-42 presents a typical turbojet engine. The

major dimensions and differences between each of the six engines are

summarized on page 1-16, All versions of the turbojet ai e fully

augmented and weights for each of the six engines were quoted.

Figure 1-43 shows external dimensions and a proposed accessory ar-

rangement for the high temperature, base flow engine.J
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The 4' downward cant of the engine is required for the turbojet engine
as well as the turbofan. Various combinations of engine positions

relative to the L-ZOOO-4 wing shape were tried. The curren)t design
has placed the cant in the turbojet enginle slightly aft of the rear mount

structure. All subsequent installation studies showed the cant at this

location with an octagonal sliding shroud ejector.

3 iThe additional length of the turbojet engine plus the rearward movement

of the engines relative to the wing makes it possible to install the en-
gine in the L-2000-4 wing without blockage of any of the ejector blow-3 in doors. Reaching this optirnurn position rec,_mires setting the ejector
higher into the wing and increasing the cant angle to approximately 6'
(Figure 1-44). As seen in the figure, the engine rear mount ring

Sappears to be in a favorable position for direct mounting to the wing.

An alternate scheme placed the top of the ejector flush with the top of
I the wing. This allowed full utilization of the blow-in doors and intro-

duced the added feature of reduced cant angle. Unfortunately this
arrangement lowered the engine relative to the wing sufficiently to
elirninate a practical mounting installation.

Continued detail design of the engine will create further areas requiring
coordination and revised installation techniques and procedures.

I
I
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TABLE 1-5

Performance of STJ227 Engine at Completion of Phase 11A
and at Completion of Phase lIH

B,,Ric Engine Initial Engine
Phaso 1LA Phase IM Phase IM

Supersonic Cruiso Turbine
Irhnt Temperature (OF) 2200 2200 1900

"T;Ik(-Off Max:mtno rutut (1b) 60600 59800 57000

Airflow Size (lb/sec) 525 5 2 525

Maxir-num Diameter (in) 78 75 75

E'ngino Woight Including Ejector (Ib) 9850 10455 10470

Trhat,,,;onic AccelerationtM cath 1. 2 at 45000 rt

T'hri~ (Ib) 21400 21400 20600

l(' t f•' Fuecl G~tMumptton•

(W'/ N',/ b) 1.86 1,83 1.91

-,rimnic C r us Match 2. 7 at 65000 OL_,t Tit,,t I.Q 0 1 ib

sipolifit; F'ue l Cons un, 110ootl
(lib/ ill /i pi) 1. .1 , A15 ,4

Subticinlc Par, 'Fhrottiv, Matiuh kv 9 at 36150 Fl., 'rh1l al 7Ei00 o b

5poci fic 1IIej 1 Col't iimptioin
(li/ h. /I1) I. 10 1. 06 I 05

Sidtlatmh Part T rotth,, Myth n,i, at 15000 -tL'Jhru t '' 65s0t0 Ib

(ih/ hr /11;) 1.33 i 25 1.
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Particular emphasis during Phase LIB was placed on the augmentation
systems, and IBM performance decks were provided to the airframe
manufacturers to permit airframe-powerplant optimization with the
fully augmented tur'iojet engine. In addition, a ,tudy of inflight thruit
measirenment tochniques bas,ed on the STF219 engine, was conducted.

2. AUGMENTATION SYSTEM STUDIES

T'F,.w rela.xation of the sonic boom overpressure limit permitted a re-
optimization of the engine cycles, and, in particular, the augmentation
systems. For the STF219 engine, the effect of reducing the amount of

augmentation and the magnitude of the thrust discontinuity between un-
atuJ;rnent.-cl and minimum augmented operation were .,,tuidied, For the
'STF227 ungine, the effects of the turbine inlet temperature and engine

air flow on augmentor performance were studied.

a. S'Ti, 19

Sin.A( the engines are now dized for supersonic c-.uuioe rather than for
transonic acoeluration, the fuel consumption cluring climl- -an be re-
diiced by redticing the duct heater a-mgmontation thrys t anu terrpeeraftlre,
A reduction in the maxirrun augmentation thrust of I to 5 percent cor-
responds to an auigmentation temperature reduction of 100 to 300'F ard
lricrr-a,1n t the aircraft range by 20 to 35 i'tlie..

Tho Pha,. h1A evaluation indicated that the evaluating toam considered
Oth thi•tip-t diii coniuimity betvw,- ,l non-augme ntedl and minimumn aiignie nted
thrl Io hI e toc great. Co-ir luee ntly, a; titudy WaE; con tlucted to (ht-terminc._
the • loadlinlg appli•d to a ,mfienger when the duct ho; ters on all four

nunginer9 are lit Hirrnultar .ioufly with n,, ovral augrrmentation ration. Thi

for theci pe rformaance d ita pretiented during Phaino 11A for whiich the0 ful--
at, tratio for ]ighti .. a/s 0, 01, For tht (e cordItion,, the g 1 ]o, Ill(,' WO h Id
130 only ). 05, VlowevOr, rfftuk.lief conducted (luring Phame I11B have indicatede
that the tirnimrun) duct heating fuel-air ratio could he rv.ouend to 0. 008,
;here;-)y -edncwing tho g loadinng t.o (, 04. - ta ho c( hol H Lion h.a ii-In ii ,.r, ion -
fit iit((,l sIt lILtuCII loW(-t" fuWI-air ratio , and, witli additlonol elevelopmied I,
it would he po:tlh to der'crvame the inl•nmum ,,firi-air ratliio In 0. 003,I
cnrroe ponding to a ialniiin) g loading t,i 0,, 0. 1 , probilemn him Ieet i
diicifiui,.r] With y 'l irl rJ' ltlr-, manul 'ai ctur rti, litwriv(or, aind it wam IV•df l wlett that

I panflio ,ri on pr,•seit conimenr.ial jet /t , I Iaft expa'leii "a Ag Iuia ing
of about 0. 1, and, ill Wome ('afloC , th ley exp o-inc Cl 1g Iohditgw 11M hIlglh -Is
0 33, It appo rir1l, Ihi Ft•i(lto ., tk.ilt Hie L, In i,|in-, J l II,.,,,, u, 11i , lh ,.-
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flight will be significantly lower than that of current jet aircraft and,
therefore, that there is little reason to develop a duct heat"r capable 1
of ignition with a fuel-air ratio below 0. 008.

b. STJ227 1
(1) Effect of Turbine Inlec Tc:nperature

The engines were designed for operation with a turbine inlet temperature of
2200 0 F. However, initially the engines will prolably be operated with a tur-
bine inlet temperature of 1900°F, and, theref, re, the effect of operating
at the lower turbine inlet temperature must be considered. If the augmen-
tation ratio or thrust increase is to be maintained at the lower turbine
inlet temperature, the weight and maximum engine diameter are
significantly increased. If the cycle presrure ratio is to remain un-
changed, thu turbine expansion ratio must be increased to provide
the required compressor power. However, increasJing the exptan'sion
ratio incroi-iee the turbine exit Mach number and the afterbur-noi., corn-
buFtion chamber Mach number. Consequontly, the engine dlanioctor
must be Increased to provide acceptable afterburner Inlet conditionr,.
The eff!ct Uf turbine inlet temnperature on the maximun- engine diameter

is uhown in Figure 1-55.

With a turbine inlet temperature of 1900°F, ulnaugmeinted thrudt at
cruise Ls marginal and the capability for augmentation during cruise
at nonatandard tempe ratures or al; off-deeign altitudesN is desirable.
The IBM decks supplied to the airframe manufacturers, theriefore,
provided performancu, weight, and inLotalltion daLa for engines with
augmentation limited to take.-off and transonie opr.ration; limited to
takl.-off, acceleration, and uotimrson1,, , o-r1,, e• or .... 4"it.. nc -.

thrijughout tie milssion. OptirlnI 'LIA0tiu StUdie9 condduct(,d by the a -

franle IrianUfikctuirer8's and lhiaod on thoti. dat a re•ulted In the relect n
of the fully augmented veroiozn of the STS2Z7 c,'girne

(2.) Effect of Supert sonic Ci•Itihot At eflow

Thei engine corrected airflow ait cruise affects the augmentor design in aF
manne.- mirnilar to thait of the tur))Lne inlet temperature, Inl order to inl T
ciren as the aiH o'w, the p)OWo r outtput of the turbine ment be incre,tried, and,
the refor'tr , the ex.[ll•i lon ratio T•riuat; he u increitimed. Con eqlAc ti,', the rna --

inurn engine diamneter must be Increaaed to satltify the augmentor des0ignci rIlCA '! In,

Continued reduction of tho suporfiottOc cruloo airflow eventually results
in the turbine power rt.quircirr-nt beving eidalbitilhed at acceerationZi

,,•, teI , 1, i 2 2 .. .. ... .. ..... i-
S...... '2 :L ' '2-•-'I
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conditions rather than at cruise conditions. This effect is shown in
Figure 1-56.

3. INFLIGHT PERFORt AINCE MEASUREMENT SY STEM.

Inflight thrust measurement in supersonic vehicles is considerably
more complicated than in subsonic vehicles. In subs3onic vehicles,
engine pressure ratio, speed, and exhaust temperature have been
used in conjunction with a series of charts to indicate the performancr
and condition of the engine. These parameters provide an accurate

method of determining the performance of engines with fixed nozzle
geometry. For the more sophisticatud engines required for the super.-
sonic transport, however, these parameters are not adequate since
the inlet, the exhaust nozzle, and the interference effects between the -c

Spropulsion system and the airframe significantly affect the actual
applied to thte vehicle. Consenuently, thrust measurement will require
the use of additional parameters in conjunction with a compact, light.
weight (about 30 pounds) computer such as those currently being used
in missile guidance systems. The parameter-s required are list,.d in
Table 1-6 together with the measurement accuracy,,

Table 1-6

Inflight Performance Measurement Parameters

Accu1ra•cy
Parameter rrcen

Paznu free stream static pressure *1 25
PL3, fan discharge total pressure i-".,5
Ps 3 , fan discha4 ge static pressure :.
rrt3, 'i allChar'g total tU!niUer1Lur4L" 0
(Pt 3.I- l*4, /1PH 3' 4!4. 0
PU, gas generator total exhaust preossure :1:A. 0
.A1d duct' duct exha inut nozzle throat area ,.",, &3.0
W1, engine fuel flow :1:0, 5

Notes:

'* This paramu.ter ra y be _ olA a innod froi,, engine cont.()J whi2rc"

it il used for duLCt exhaust nUZzle Jisitiu)Cig.
'1* Direct me:asurcment of Aj duct may not I': i',j,.icd.

The thut'ust and thrust yi'.refic fuel Co -•ti H pitfl t ibt rlor. Iroll thI r
Uticatsu o v uid H could be in error by an rnrticl, ai th,, a) 'ithnitctical stun

of ,ie lt; ndivi(•ual (ir.ulr.4, but it iH LnlikJelV that .i1 )(r1 ", would ip-b'
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at a maximum in the same direction. It is most probable that the
error will be that predicted by the root-mean-square method of error
summation. The probable error predicted by this method is shown in
Table 1-7.

Table 1-7

Probable Error in Inflight Performance
Me asure ment

Probable Error (Percent)

Flight Condition Power Setting Total Thrust TSFCG

Sea-Level Take-Off MaximUm Duct

Heating 3.0 3A 1 2

Transonic A.ccele ra- Maximum Duct A

tio (Mach 1.2) Heating 4. Z 4.3 C

Supersonic Cruise Partial Duct Heating 12.3

(Mach Z. 7)

Subsonic Cruise Part Throttle
(Mach 0, 9) 5. 5

a

PAOE1% NO. 1-4.
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CONFIDENTIAL 
PWA-2600

REAR MT PING

611AFT

EN GINE 00371. EJECTOR

D ENGINE 
_____

IL REF LINE 23t3.9 23936 23300... ..--- -- - h t --t - !. . - _" ... .. _.. ....
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17) 2 EJECTOR SHROLVD TRANSLATES AFTTO EXPOSE FIXED CASCADE
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PRATT & WHITN•Y ACnAFT CONPIDEN ALPWA-Z600

1US STANDARD ATMOSPHERE-1962 (GFOM)
RAM RECOVERY PER" MIL-E-50088

65,000 FT PHASE II B MN 2.7
BASE AIRFLOW

1• ~~2.2- I --

Q2.2 MAXIMUM AFTERBJRNINU OR DUCT IHEAT ING
6 MINIMUM AFTERBURNING OR DUCT HEATING
0 AFTERBURNER OR DUCT HEATER NOT LIT

2,0- STF2I9
(INITIAL , -19000F)

0

ii ~ ~~ T. 1. F219I

_TST27227

1.13 ~(BASIC-L
u 22000F)

wI INITIAL "I1.
IL

L(

I:3
ii NET THRUST - 1000 LB

AT MACH 2.7 AT 65,000 FEE.;

Figure 1-45..............
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CONPIDENTIAL A.
FRAV, a WH~1'NPFYA)RC'?AfT COFDNILPWA-2600

US STANDARD ATMOSPHERE- 1962 (GEOM)
RAM RECOVERY PER MIL-E- 50082

36,150 FT PHASE UI B MN 0.9
1.5

0 MAXIMUM THRUST

z

C. 1.3 cii
Zo STJ227
0 (BASIC-22000F)

E 1.2I

0.
S~(INITIAL-"

0 •, i19000F )

Co,

I-
0 1.0

a: STF219
I- BASIC

0.9 -i

0 5 10 15 20 1

NET THRUST-' 1000 LB A

ESTIMATED PERFORMVLANCE OF STF2I9 AND STJZ.7 ENGINE-
AT MACH 0.9 AT 36,150 FEET

Figure 1-46
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CONPIDENTIAL
PRATT & WHITNEY AIRCRAFT PWA -2600

[

U uS STANDARD ATMOSPHERE-062 (GEOM)
RAM RECOVERY PER MIL-E-5008B

1 15,000 FT PHASE I B MN 0.6
1.6 1

z

o 0 MAXIMUM THRUST

0~C/) 1.4 -- _ _

[ °

,1,2
1.2 BASICJ

[ C,, CL •- INITIAL

1.0STF 219

L _____ _ _ ._________,___ooo _

I I
S~NET THRUST"- 1000 LB

SESTIMATED PERFORMANCE OF Sl FZ 19 AND STJZ27 ENGINES
AT MACH 0.6 AT 15, 000 FEET

I Figure 1-47
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PRATT& WHITNEYAIRCRAFT PWA-2600

US STANDARD ATMOSPHERE- 1962 (GEOM)
RAM RECOVERY PER MIL-E- 5008B

DE31GN TURBINE INLET TEMPERATURE 2200OF
65,000 FT MN 2.7

2.0 -r
Q MAXIMUM DUCT HEATING
, MNIMUM DUCT HEATING

LL 0 DUCT HEATER NOT LIT
-J-

z
1.8

0.-

Z 1.7
0

.J
• 1.6 PAEI

U. PHASE PA A

E31.5

L4i
UI- i.4 _

1.31
0 5 10 15 20 25

NET THRUST-,Iooo LB

ESTIMATED PERFORMANCE OF STFZ 19 Z NGINE AFTER PHASE IIA
AND AFTER PHASE lIb AT MAC14 2.7 AT 6r-000 FEET

Figure 1-48

CONFIDENTIAL ....... .



t CONFIDENTIAL
PRATT & VWHITNEY AIRCRAFT PWA-2600

I U S STANDARD ATMOSPHERE - 1962 (GEOM)
RAM RECOVERY PER MIL-E-5008 B

DESIGN TURBINE INLET TEMPERATURE 2300OF
36,150 FT MNO.9

130 MAXIMUM THRUST

LZ

z

[ 0
.JI U)z

0

1-)

u- PHASE I1 A

i, 0.9

0 .82 4 6 8 10 12

j NET THRUST- 1000 LB

Sc ,,ESTIMATED PERFORMANCE OF STF219 ENGINE; AFTER PHASE A• I
L AND AFTER PHASE LIB AT M4ACH 0. 9 AT 36,150 FEET

I. igure 1-49 ....

CONFIDENTIAL



CONPIDINTIAL
PRATT & WHITNEY AIVIRAFT PWA-2600

US STANDARD ATMOSPHERE- 1962 (GEOM)

RAM RECOVERY PER MIL-E- 5008 B
DESIGN TURBINE INLET TEMPERATURE-2300OF

15,OO0FT MN 0.6

1.3 O'
MAXIMUM THRUST

z
2 .2

o CD -- _ _ _ _

PHASE 11A

0-9 'PHASE

Ca,6

0 5 10 i5 20 25
NET THRUST 1000 LB

ESTIMATED PERFORMANCE OF STrZ219 ENGINE AFTER PHASE 11A
AND AFTER PHASE TIB AT MACH 0. 6 AýT 15, 000 FEET

Figure 1-50 . 1
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PRATT WHITNEV AIRCRAFT PWA-2600L
US STANDARD ATMOSPHERE-1962 (GEOM)

RAM RECOVERY PER MIL-E- 50080
DESIGN TURBINE INLET TEMPERATURE 22000 F

2.t 65,000 FT MN 2.7

r MAXIMUM AFTERBURNINGg MINIMUM AFTERBURNING[ AFTERBURNER NOT LIT

- 20 CORRECTED/PHASE AIRFFLOW! P[ /LB/SEC

zj LrB372t_ _

[z
L W PASE P1 NA PHASEPEAB

[ NETTHR1r.8O0 L

co
z _

II

[ ~~~~1.6 - _ __ __

C)

II

L L - 14 *SELECTION OF AIFLOW 1S POSSIBLE BETWE-EN
THE RANGE OF 316 TO 414 LB/SEC NO S-ELECTION

rWAS PROVIDED IN PHASE IIA

15 10 15 20 25 30
NET THRUST' - 1000 LB

r ESTIMATED PERFORMANCE OF STJ227 ENGINE AFTER PHASE 11A
AND AFTER PHASE IIB ATr MACH Z. 7 AT 65, 000 FEET

F- CONFIDENTIAL
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CONFIDENTIAL

PRATT & WHITNEV AIRCRAFT PWA-Z600

U S STANDARD ATMOSPHERE- 1962 (GEOM)
RAM RECOVERY PER MIL-E-5008B

DESIGN TUR8INE INLET TEMPERATURE 2300*F
36,150 FT MN 0.9

1.6

"0 MAXIMUM THRUST

1.5

z
'I-I- 1.4 - -

1.3-- • -_

.. PHASE IE A

J PHASE 118

I-0

I,. C--

0 5 10 15 20

NET THRUST-'IO00 LB

ESTIMAl ED PERFORMANCE OF STJZ27 ENGINE AFTER PHASE 11A

AND AFTER P14ASE I1B AT MACH 0.9 AT 36,150 FEET

Figure 1-52
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F CONFIDEN4TIAL
PRATT WHiTNEY AIRCRAFT PWA-2600

L US STANDARD ATMOSPHERE -1962(GEOM)
RAM RECOVERY PER MIL-E-5008B

DESIGN TURBINE INLET TEMPERATURE= 2300*F
15,000 FT MN 0.6

z 1.To 0 MAXIMUM THRUST

zt
p ,I

8i 14

PHSEII
. 1.2-

Ii 1.0

NET THRUST- 1000 LB

E STIMfATED PE•RFORMANCE OF STJ227 ENGINE AFTER PHASE IIA
AND AFTER PHASE IIB Ar MACH 0.6 AT 15,000 FEET

t Figure 1-53
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CONFIDENTIAL
PRATT & WHITNEY AIRCRAFT PWA -2600

U S STANDARD ATMOSPHERE- 1962 (GEOM)
RAM RECOVERY PER MIL.-- E- 50086

TOGW - 450,000 LBS

.06 DUCT HEATER
FUEL AIR RATIO

t• 0 4 _PHASE 71 A_
.4 ..- 0008

bgi _ _ _ _ _ __ _ _ _

0
I-

1.0 DUCT HEATER
0 FUEL AIR RATIO

0..8

PHS 1 '..'.o0oo

a 04
S•5 .0 1, 202.B,.

FLIGHT MACH NUMBER !

LOADING AND THRUST INCREMENT PRODUCED 13Y
LIGHTING DUCT HEATER OF STFZ 19 ENGINE m-

Lii
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iivC 5

Tz

LL

Lw

>< =,, T AFTERDURNING

"J • W\- DUCT HEATING

c IJJ TURBOFAN

TURBINE INLET TEMPERATURE

Ii

EFFECT OF TURBINE INLET TEMPERATURE ON ENGINE

WEIGHT AND MAXIMUM DIA.METE',R

I Figure 1-55F|.g re1-5 .... .... .. ....... .. .... •
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PRATT & WHITN'R AAc.RAPT PWA-2600

ctt i

w
21.-

D4

Z z

Sw i
I

ww

LOW BASE HIGH

SUPERSONIC CRUISE
ENGINE INLET CORRECTED AIRFLOW

1EFFECT OF ENGINE SUPERSONIC CRUISE INLET AIRFLOW

ON ENGINE WEIGHT AND MAXIMUM DIAMETER

Figure i-5.;
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